C.U.SHAH UNIVERSITY

Winter Examination-2015

Subject Name: Numerical Methods

Subject Code: 4SC04MTE1 Branch: B. Sc. (Mathematics)

Semester: IV Date: 21/11/2015 Time: 02:30 To 05:30 Marks: 70 Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

a) Which of the following is transcendental equation

1)
$$x - 2 = 0$$

2)
$$x^2 - 3x + 6 = 0$$

3)
$$xe^x - 2 = 0$$

- 4) None of these
- **b)** A real root of the equation $x^3 x 11 = 0$ lies in

- 4) None of these
- c) The order of convergence in Bisection method is
 - 1) linear

2) zero

quadratic

- 4) None of these
- **d)** Which of the following is a step by step method:
 - 1) Taylor's

2) Picard's

3) Euler's

4) None of these

e) Match the following:

Materi the following.			
A	Newton-Raphson	1	Integration
В	Runge-kutta	2	Root finding
С	Simpson's Rule	3	Ordinary Differential Equations

1)
$$A2 - B3 - C1$$

2)
$$A1 - B3 - C2$$

3)
$$A2 - B1 - C3$$

- f) The number of strips required in Weddle's rule is
 - 1) 2

2) 4

3)6

- 4)8
- g) Newton's iterative formula to find the value of \sqrt{N} is
 - $1) x_{n+1} = \left(x_n + \frac{N}{x_n} \right)$

- 2) $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$
- 3) $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x_n^2} \right)$
- 4) $x_{n+1} = \frac{1}{2} \left(x_n \frac{N}{x_n} \right)$
- **h)** In Regula-falsi method, the first approximation is given by......
- i) Using forward differences, the formula for $f'(a) = \dots$
- j) Taylor's series solution of y' = -xy, y(0) = 1 up to x^4 is
- **k)** The second order Runge-Kutta formula is Modified Eular's method. Determine whether the statement is True or False.
- 1) In Eular's Method if *h* is small the method is too slow, if *h* is large, it gives inaccurate value. Determine whether the statement is True or False.
- **m**) Whenever Trapezoidal rule is applicable, Simpson's 1/3rd rule can also be applied. Determine whether the statement is True or False.
- **n**) Runge-kutta method is a self-starting method. Determine whether the statement is True or False.

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions (14)

- a) Compute real root of $x^3 9x + 1 = 0$, correct to two decimal places, by bisection method. (05)
- b) Find by Newton-Raphson Method the real root of $3x \cos x 1 = 0$, correct to five decimal places. (05)
- c) Find y(0.10) and y(0.15), by Euler's Method, from the differential equation, $\frac{dy}{dx} = x^2 + y^2$, y(0) = 0, correct up to four decimal places, taking step length h = 0.05.

Q-3 Attempt all questions (14)

- a) Let $x = \xi$ be a root of f(x) = 0 and let I be an interval containing the point $x = \xi$. Let $\phi(x)$ and $\phi'(x)$ be continuous in I where $\phi(x)$ is defined by the equation $x = \phi(x)$ which is equivalent to f(x) = 0. Then prove that if $|\phi'(x)| < 1$ for all x in I, the sequence of approximations $x_0, x_1, x_2, ..., x_n$ defined by $x_n = \phi(x_{n-1})$ converges to the ξ , provided that the initial approximation x_0 is chosen in I.
- b) Compute one root of $e^x 3x = 0$, correct to two decimal places which between 1 and 2.
- c) Compute $\sqrt{27}$ correct up to six decimal places. (04)

Q-4 Attempt all questions (14)

- a) Use Picard's method to compute y(0.1), from the differential equation $\frac{dy}{dx} = x + y; y(0) = 1.$ (05)
- b) Compute y(0.6), by Runge-Kutta method correct to five decimal places, from the equation $\frac{dy}{dx} = xy$, y(0) = 2, taking h = 0.2.
- c) Evaluate $\int_0^1 x^3 dx$, by Trapezoidal Rule, with n = 5. (04)

Q-5 Attempt all questions (14)

- a) Derive differentiation formulae based on Newton's backward formula. (05)
- c) Evaluate $\int_0^6 \frac{dx}{1+x^2}$, by using Weddle's rule. (04)

Q-6 Attempt all questions (14)

a) Compute y(0.5), by Milne's predictor corrector method from $\frac{dy}{dx} = 2e^x - y$ (05) given that y(0.1) = 2.0100, y(0.2) = 2.0401, y(0.3) = 2.0907, y(0.4) = 2.1621

- b) Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position correct to three decimal places. (05)
- c) Apply Euler-Maclaurin sum formula to find the sum $1^3 + 2^3 + 3^3 + \dots + n^3$. (04)
- Q-7 Attempt all questions (14)
 - a) Derive Trapezoidal rule. (10)
 - b) Evaluate: $\int_{0.1}^{0.7} (e^x + 2x) dx$ by Simpson's One third rule, taking h = 0.1, correct to 5-decimal places. (04)
- Q-8 Attempt all questions (14)
 - a) State and prove Euler-Maclaurin Sum Formula. (05)
 - **b**) Derive differentiation formulae based on Newton's divided difference formula. (05)
 - c) Describe Picard's Method for first order ordinary differential equation. (04)